Nonlinear Time Series Analysis
Very short: The theories and results about Chaos are applied to time
series like ECGs, EEGs, economical data etc.
Publications:
- A. Schmitz,
Measuring statistical dependence and coupling of subsystems
, Phys. Rev. E 62, 7508 (2000)
- T. Schreiber and A. Schmitz
Surrogate time series
Physica D 142, 346-382 (2000),
- T. Schreiber and A. Schmitz
Constrained Randomisation of Time
Series for Nonlinearity Tests
A. Mees, ed.,
Nonlinear Dynamics and Statistics, Birkhäuser Boston
(2000)
- A. Schmitz and T. Schreiber
Surrogate data for non-stationary signals
K. Lehnertz, C. E. Elger, J. Arnhold, and P. Grassberger, eds.,
Proceedings
``Chaos in Brain?'', World Scientific, Singapore (2000)
- A. Schmitz and T. Schreiber,
Testing for nonlinearity in unevenly sampled time series
, Phys. Rev. E 59, 4044 (1999)
- T. Schreiber and A. Schmitz,
Constrained randomisation of time series for hypothesis
testing
,
in Proceedings of NOLTA 1998,
Presses Polytechniques et Universitaires Romandes, Lausanne (1998).
- T. Schreiber and A. Schmitz,
Classification of time series data with nonlinear similarity
measures, Phys. Rev. Lett. 79, 1475 (1997)
- T. Schreiber and A. Schmitz,
Discrimination power of measures for nonlinearity in a time
series, Phys. Rev. E 55, 5443 (1997)
- T. Schreiber and A. Schmitz,
Improved surrogate data for nonlinearity
tests,
Phys. Rev. Lett. 77, 635 (1996)
Poster:
Diplomarbeit:
Dissertation:
For further interesting publications visit Thomas.
If you have suggestions or questions:
Mail me
.