Nonlinear Time Series Analysis
Very short: The theories and results about Chaos are applied to time
series like ECGs, EEGs, economical data etc. 
Publications:
-   A. Schmitz,
      
      Measuring statistical dependence and coupling of subsystems
      , Phys. Rev. E 62, 7508 (2000)
 -  T. Schreiber and A. Schmitz
      Surrogate time series 
      Physica D 142, 346-382 (2000),
 -  T. Schreiber and A. Schmitz
      Constrained Randomisation of Time
      Series  for Nonlinearity Tests
      A. Mees, ed.,
      
         Nonlinear Dynamics and Statistics, Birkhäuser Boston
      (2000)
 -  A. Schmitz and T. Schreiber
      Surrogate data for non-stationary signals
      K. Lehnertz, C. E. Elger, J. Arnhold, and P. Grassberger, eds.,
      Proceedings 
         ``Chaos in Brain?'',  World Scientific, Singapore (2000)
 -   A. Schmitz and T. Schreiber,
      
      Testing for nonlinearity in unevenly sampled time series
      , Phys. Rev. E 59, 4044 (1999)
 -  T. Schreiber and A. Schmitz, 
      
      Constrained randomisation of time series for hypothesis
      testing
      ,
      in Proceedings of NOLTA 1998,
      Presses Polytechniques et Universitaires Romandes, Lausanne (1998).
 -  T. Schreiber and A. Schmitz,
      
       Classification of time series data with nonlinear similarity 
      measures, Phys. Rev. Lett. 79, 1475 (1997)
 -  T. Schreiber and A. Schmitz,
      
       Discrimination power of measures for nonlinearity in a time
      series, Phys. Rev. E  55, 5443 (1997)
 -  T. Schreiber and A. Schmitz,
        Improved surrogate data for nonlinearity
      tests, 
      Phys. Rev. Lett.  77, 635 (1996)
 
Poster:
Diplomarbeit:
Dissertation:
For further interesting publications visit Thomas.
If you have suggestions or questions:
Mail me
.